
Bingo + SMCPy
BingoBros, D309/NASA Langley

Application Background

• Combination of symbolic regression (i.e., interpretable machine 

learning) and uncertainty quantification

• Enables learning analytical models from noisy, real-world data

• Large number of embarrassingly parallel computations

• Research powering the code is currently being funded by IRAD for 

FY22

• Code is open source and currently being used by a number of

universities and NASA partners

Hackathon Objectives and Approach

• Push equation evaluation to GPU by parallelizing across 

different parameters and batching equations

• Utilize cupy as a drop-in replacement for numpy

vectorization

• Analyze performance bottlenecks using nsys and nsight

compute profiling

• Refactor algorithms to be more amenable to GPU 

programming

Technical Accomplishments and Impact

• Speedup compared to:

CPU implementation: 23x

Initial GPU implementation: 10x?

• How did you achieve it? 

GPU parallelization of the primary computations (across all models, 

constants and data)

• Why does it matter / what does it enable?

Original combination of codes resulted in significant slowdown; 

GPU version makes the novel machine learning method tractable

• Plan to continue work? Yes! Continued GPU access will be critical.

23x speedup gained in hackathon!



DELTA DSG
DELTA and the Code TI Data Sciences Group at NASA Ames

Application Background

• DELTA is an open-source framework written to 

simplify deep learning with satellite imagery

• We leveraged multiple GPUs and multiple 

nodes with GPUs to attain faster training times

• Will benefit users of DELTA: scientists working 

with Earth science imagery and ML

Hackathon Objectives and Approach

• Python/Tensorflow/Tensorboard

• GDAL, common python libraries

• Profiling to identify data pipeline hotspots

• Comparing epoch training times across 

different resource levels

Technical Accomplishments and Impact

• We were able to profile our application with several 

different GPU resource levels

• We achieved multi-node training on a toy problem with 

progress on implementing this in production code

• This will reduce training times for some model 

architecture and dataset types

• After the hackathon we will be finishing production code 

integration and testing

1 GPU 4 GPUs Multi-Node

Epoch

Train Time

2800 s 1500 s

(1.85x)

TBD



Exploring GPU Parallelism for NASMAT
NASA Multiscale Analysis Tool (NASMAT), NASA GRC/LMS

Application Background

• A robust, modular tool for performing multiscale 

analyses of materials 

• Next evolution of NASA MAC/GMC software

• Computational motifs targeted at hackathon -

Sparse/Dense Linear Algebra, Structured Grids

• Stakeholders – ARMD/TTT, STMD/ESM

NASMAT’s structure in terms of core procedures – A code 

re-write is necessary to improve parallel performance

Hackathon Objectives and Approach

• Programming models – Fortran, OpenACC

• Profiling / hot spots – Homogenization/Localization

• Libraries – Intel MKL, NVTX

• Performance tuning – Parallelizing highest level

Technical Accomplishments and Impact

• Able to definitively determine that a code rewrite was needed

• Learned the basics of OpenACC and was able to successfully 

implement them in the code

• Saw some improvements in speed, but plenty more to work on

• This event has helped the team get a better idea of how to 

proceed over the next year of code development.



OVERFLOW
Central solver Mini-App / NASA Langley

Application Background

• OVERFLOW is a widely used CFD application using 

structured, overset grids to simulate a wide variety of 

problems in government, industry, and academia.

• During this hackathon we focused on some basic routines 

that represent a lot of the data access and computational 

patterns in the main application.

• Structured, overset, finite difference solver

Greatly improved 

performance for small 

grid blocks

Hackathon Objectives and Approach

• OpenACC+CudaFortran+CudaC+CuSparse

• Improve performance of some kernels through merging 

(improving arithmetic intensity) and reordering of tasks (load 

everything well before use to avoid long scoreboard waits)

• Rethinking our approach to parallelism by potentially looping 

over the grids inside the kernels to expose more parallelism

Technical Accomplishments and Impact

• We were able to speed up several kernels and improve the 

launch characteristics

• Avoiding excess waits, utilizing cuda streams, launching kernels 

in parallel

• Up to 7x times faster than CPU

• Enables simulations to be run faster (database generation, large 

cases)

• We have several plans and milestones to continue this work and 

would like continued support/access to the hardware from NASA



Physics Routine Porting to GPUs
Gravity Wave Drive / Shallow Convection / NASA Goddard

Application Background

• GEOS: Fortran-based coupled ocean-

atmospheric model

• Gravity Wave Drive and Shallow Convection 

are part of GEO’s parameterized physics 

routine codebase

Hackathon Objectives and Approach

• Gain experience using Kokkos and 

OpenACC

• Learn about profiling tools

Technical Accomplishments and Impact

• Created working standalones of codebases 

that utilize Kokkos and OpenACC

• Initial timings show the GPU executing 2-10x 

faster than the CPU code

• The work is a starting point for an effort to 

have the GEOS code running on GPUs



SLAT
Sparse Linear Algebra Toolkit / NASA Langley

Application Background

• Linear solver capabilities for Computational 

Aerodynamics

• Algorithmic building blocks and complete utilities 

supporting research and production

• Sparse Linear Algebra motif

• NASA and Aerospace industry partners

Figure or Plot 

Showing 

Representative 

Result

Prediction of skin friction drag 

forces on the Common Research 

Model

Hackathon Objectives and Approach

• Programming models

• - cuda, OpenACC

• Profiling / hot spots

• - ILU(k) solves

• Libraries

• - cuSparse and cuBLAS

• Performance tuning

• - cudaMemPrefetchAsync

Technical Accomplishments and Impact

• 16x speed up over multi-core CPU

• Implemented Linear solver

• - ILU(k) preconditioning

• - GMRES

• Eddy-resolving methods for certification by analysis

• Will be integrated into Stabilized Finite Elements 

Library within FUN3D



tess-backdrop / scatterbrain
tess-backdrop / Code S, NASA Ames

Application Background

• We have an app “tess-backdrop” which builds a simple 

linear model for the scattered light background in TESS 

images.

• This model can be built for small patches very cheaply, 

after we first find and fix the weights.

• We wanted to run the first weight fit on the supercomputer, 

to process the images more quickly. Started with ~1 hour 

to process a single CCD/Sector of TESS data.

Hackathon Objectives and Approach

• We developed a “mini-app” which has only 

the core functionality of tess-backdrop; 

scatterbrain

• Python code

• Original code was fully numpy/CPU, we 

have updated the mini-app to allow either 

CPU or GPU computing.

Technical Accomplishments and Impact

• We were able to achieve a >40x speedup over CPU, 

which greatly improves what we will be able to 

achieve with our main tool.

• We have learned cupy and MPI to obtain these 

speed ups and will be implementing the changes in 

our full application after the hackathon.

• We’ve learned how to profile our new GPU code with 

nsight

SSDL



Team UPSP
Unsteady Pressure Sensitive Paint / NASA Ames

spatially-dense measurement of unsteady surface pressure

Application Background

• Unsteady Pressure Sensitive Paint: Wind tunnel surface 

pressure measurements with unprecedented spatial and 

temporal resolution.

• Also generates unprecedented volumes of data, sent to NAS 

during test for near real-time processing.

• Current application: launch vehicle aeroacoustics and buffet 

(SLS)

• Currently all CPU based. Team is unfamiliar with GPUs.

Hackathon Objectives and Approach

• Improve small step in uPSP software pipeline (spectral 

analysis)

• Brought a standalone mini-app to the event (separate 

code base, build system, etc)

• Practice implementing “bare” CUDA in C to learn more 

about details of CPU/GPU communication and 

coordination

Technical Accomplishments and Impact

• Accomplishments: Improved upsp_fft_decomposition. Used 

profiler, implemented GPU speedups, current DMD 

algorithm

• 15 seconds down to 5 seconds including GPU, CPU, IO

• Build tribal knowledge about GPUs. Successful team 

training exercise

• Miniapp was small aspect of our project. Will apply lessons 

to other parts of uPSP software.



VULCAN-CFD
NASA Langley

Application Background

• Hypersonic Computational Fluid Dynamics Simulator. 

• Focused on air-breathing scramjet / ramjet hypersonic 

vehicles. 

• Stakeholders:

• NASA Hypersonic Technology Project

• DoD 

• Industry partners

• University partners

Hackathon Objectives and Approach

• Port Fortran90 to C++ and Kokkos

• Ported and profiled unstructured inviscid 

residual, gradient evaluation, and inviscid 

Jacobian calculation.

• Performance tuned the residual and gradient 

kernels.

Technical Accomplishments and Impact

• Achieved an estimated ~12x speed up for targeted kernels 

compared to CPU based compute node*

• Speedup achieved through transposing kernel structures or 

rewriting kernels to expose more parallelism.

• Impact: Faster scramjet simulations.

• We plan to port the entire unstructured CFD solver to support 

GPUs. 

* Speed up results compared to single CPU core perfect 

linear strong scaling across 48 cores


